Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments
نویسندگان
چکیده
This chapter examines the performance characteristics of both asynchronous and synchronous parallel particle swarm optimisation algorithms in heterogeneous, fault-prone environments. The chapter starts with a simple parallelisation paradigm, the Master-Slave model using Multi-Objective Particle Swarm Optimisation (MOPSO) in a heterogeneous environment. Extending the investigation to general, distributed environments, algorithm convergence is measured as a function of both iterations completed and time elapsed. Asynchronous particle updates are shown to perform comparably to synchronous updates in fault-free environments. When faults are introduced, the synchronous update method is shown to suffer significant performance drops, suggesting that at least partly asynchronous algorithms should be used in real-world environments. Finally, the issue of how to utilise newly available nodes, as well as the loss of existing nodes, is considered and two methods of generating new particles during algorithm execution are investigated. Institute for Integrated and Intelligent Systems Griffith University Brisbane Queensland Australia [email protected] Institute AIFB University of Karlsruhe Germany [email protected] School of Engineering Griffith University Brisbane Queensland Australia [email protected]
منابع مشابه
Correcting Response Failure Errors in Multi-Objective Optimisation in Unreliable Distributed Computing Environments
Population-based, multi-objective optimisation algorithms are increasingly making use of distributed, parallel computing environments. In these cases it is a commonsense precaution to consider the possibility of a variety of failures. In particular, errors caused by response failures are more prone to arise than in homogeneous parallel computers. While masking errors using redundant computation...
متن کاملDecentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs
Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...
متن کامل